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INTRODUCTION

Wave scattering from a sinusoidal grating has been a

problem of considerable interest in a number of disciplines.

It is of interest in seismology for modeling the affects of

topography on seismic wave propagation. Many of the

discrete wavenumber modeling techniques that have been

developed for sinusoidal gratings are also applicable to

interfaces of arbitrary shape.

In this paper we will compare results and numerical

properties of four different discrete wavenumber modeling

techniques. All of the comparisons are done for the simple

problem of a sinusoidal free surface grating with a

vertically traveling plane wave incident from below (Figure

1). Particle motion is parallel to the strike of the

structure (SH waves). The modeling methods we will examine

are the Aki-Larner method (1970), the WA'- man method

(1975), the Waterman-Fourier method (Varaden, et al. 1987),

and the Campillo-Bouchon method (1987). We will refer to

these methods as AL, WR, WF, and CB, respectively. All of

these techniques are applicable to interfaces of arbitrary

shape and can in principle be generalized, to fully elastic, For

multi-layer, and 3-D models. C3
A solution to the sinusoidal grating problem was 0

proposed by Payleigh (1907). MP exn;ed the wavefield in

terms of up and down going plane waves and solved for the n/
.ty Cds

coefficients by satisfying the stress free boundary ' /Co

,pea l

,p-aii il i ,. - -- -
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condition at a number of points along the surface. AL is

essentially an overdetermined, least squares version of the

Rayleigh method, formulated in the wavenumber domain.

However, since Lippmann (1953) questioned the expansion used

in the Rayleigh method, the so called "Rayleigh ansatz", the

history of this modeling approach has been shrouded in

controversy. Lippmann suggested that the Rayleigh expansion

is satisfactory below a plane bounding the topography, but

is unsatisfactory inside the the peaks (Figure 2).

Petit and Cadilhac (1966) proved that the Rayleigh

ansatz could not be valid if the ratio of the amplitude to

the wavelength of the sinusoid (h/L) is greater than 0.072.

Millar (1971) proved that the Rayleigh ansatz is in fact

valid if h/L is less than 0.072. Other authors have shown,

e.g. Wirgin (1980) and Jiracek (1973), that the Rayleigh

ansatz is usable for slopes greater than the Millar limit.

There continues to be heated debate over this issue. (See

Wirgin 1986, and Lakhtakia et al., 1986.)

In addition to the controversy over the validity of the

Rayleigh ansatz, there has been discussion as to whether the

Waterman method (WR) uses the ansatz. Basically this

method, also known as the T-matrix method, makes use of the

Helmholtz formula to generalize the boundary conditions.

Waterman originally claimed that his approach was not

dependent on the ansatz. Today, it is generally accepted

that WR uses the ansatz and is therefore limited by the

slope of the interface (Lakhtakia et al., 1985b).
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WF is an alternative formulation of the Waterman method

that uses the expansion proposed by Masel et al. (1975)

instead of the Rayleigh ansatz. In principle, it is not

limited by the slope of the interface.

The Campillo and Bouchon method (CB) resembles the

aforementioned techniques in some ways, and it is clearly

independent of the Rayleigh ansatz. CB is a collocation

method similar to AL, but it parameterizes the reflected

wavefield in terms of line (or point) sources distributed

along the interface.

We will compare and evaluate the four techniques as

they apply to the sinusoidal free surface, SH wave problem.

In particular we will map the region of energy conservation

with respect to slope (h/L), frequency (k'L), and N (the

number of plane waves used in the expansion). We will also

examine the wavefield, at the interface and below the lower

bounding plane of the topography.
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METHODS

In this section a unified description of the four

methods will be given in order to define the common

features. All of them operate on time harmonic solutions to

the wavefields, and the time dependence, exp(iwt), is

suppressed. In all four methods the model is assumed to be

periodic in the x-direction, leading to a discrete plane

wave representation of the wavefield. The x and z

wavenumber components are:

kn = 27fn/L (1)

and 7n - (2/12 _ kn2)i/2 (2)

where
S(A/P)1/2 _ shear wave velocity. (3)

Effects of adjacent periods can be suppressed by adding a

small imaginary component to w which can be defined in terms

of a realistic Q parameter. Each of the methods can be

stated in matrix form.

For AL, the matrix representation is,

a = G r (4)

where

rn = the coefficients in the Rayleigh expansion for

the reflected waves, i.e.,

UR i(knX + (nZ)
UR X r n e z W (x (5)
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am = the Fourier transform of the traction on the
interface surface due to the incident field.
For a vertically traveling plane wave of unit
amplitude,

Lnz iT0(x) -kmx
am - i-y0/L JO e e dx. (6)

And
L i(kn _ km)x i-,n (X)

mn = -iJ/L .k e e dx. (7)
.0

Truncation of the series (5) and discretization of integrals

(6) and (7) leads to a least squares solution,

} = -M, , 0, ,+M (8)

where

N = 2M+i. (9)

The solution to (4) minimizes the normal stress at the

surface sample points in a least squares sense. The vector

a and columns of the matrix G can be calculated using the

fast Fourier transform (FFT). In this study we use an FFT

of length 128 and solve for a vector r of length N. With N

< 128, the problem is overdetermined.

The Waterman method derives from the Helmholtz formula

equations (10 and 11), aftet plane wave expansions have been

substituted for the Green's functions and the wavefields.
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Equation 10 represents Huygen's principle, and equation 11

is the extended boundary condition. (Wat,-rman 1975)

R(z (10)
1/4i nl.[U + Vg - g vU + ] dx

Ui (z < (i

where

g = the free space Green's function,

and

U+ = the wavefield on the interface.

A

Note that n. VU+ = 0 on a free surface.

Modeling using WR or WF requires that we solve the

following coupled set of matrix equations.

r =Q + (12)

b =Q a (13)

where

rn = the coefficients of the reflected wavefield as
in AL, except the domain is limited to z > h,

bn = the coefficients of the incident wavefield, i.e.,

1 n =0

bn  =2(14)

and

am = the coefficients of the surface field
expansion.

For WR,

+M i(kmx - (m5(X))
U+ = X "m e (15)

m---M
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+ FL i(kmx ± -Ynn) i(knx - I )

QM =i/kL m- kmnx/nz) e e dx (16)

and for WF,

+M ikmx

U+  a e (17)
m=-M

+ rL i(kmx ± -Yn) iknx
Qnm = i/kLJ (7m - kmnx/nz) e e dx (18)

Equations 12 and 13 correspond to equations 16 and 18,

respectively, with an implied trucation length of 2M+1

wavenumber samples. Equation 15 is equivalent to the

Rayleigh ansatz expansion, albeit expressed in terms of

upgoing instead of downgoing waves. If we use the

alternative surface field expansion proposed by Masel et al.

(1975), the matrix equations represent the Waterman Fourier

method (WF).

It is interesting to note that although they are used

in a completely different context, the Q- matrix for WF is

nearly identical to the transpose of the G matrix used in

AL. The two integral expression are the same except for a

factor (nz) in the integrand. This suggests that the

elements of the Q matrix can be generated a row at a time

using an FFT. For a sinusoidal interface, the integral (18)

simplifies to a Bessel function. However, in this study we

will calculate the Q matrices using FFT's, as we would for



a

an interface of arbitrary shape. A sample length of 128 is

used, the same as with AL.

A normalization scheme can be applied to WR or WF to

improve stability. The details of this scheme are in

Appendix I.

The CB method is a collocation method like AL. Unlike

the other methods, however, the coefficient vector is in the

space domain rather than the horizontal wavenumber domain.

The wavefield is expanded in a series of line sources

equally distributed in x along the interface:

xn - (n-i) L/N. (19)

For CB th matrix representation is

e B f (20)

where

cn = the traction on the interface due to the
incident field, i.e.,

i -o (Xn )

cn - i nz -y0 e (21)

f m = the line source coefficients, i.e.,

+M +M I7pIZ - mj ikp(X - XM)
UR = 1/(2iuL) Z fm Z (1/7 ) e e (22)

M--M p--M
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and

B +M A 
/i)pZn - m ik p(Xn - Xm)

nm = /(2ig) X (in k e (23)
p--M

The use of the line source expansion (22) replaces the

Rayleigh ansatz and Masel expansions used in and WF,

respectively. Equation (20) extinguishes the normal stress

at the source points; it is even-determined, with as many

equations as there are line sources. We could formulate CB

using an overdetermined least squares solution at the cost

of an additional loop in the calculation of the matrix

elements. This addition would be costly in terms of

execution time.
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RESULTS

A simple way to evaluate the four techniques is to test

for energy conservation. In each numerical experiment we

assume that a monocromtic, vertically traveling plane wave

of unit amplitude is incident on a sinusoidal free surface.

Energy conservation requires that the reflected energy flux

equals the incident energy flux, i.e.,

+M Re(-Yn )

X IrnI 2 -- - 1, (24)
n--M (-Ynl

as used by others (Larner 1970, Lakhtakia et al. 1985a).

The interface slope is described by h/L. the ratio of

the amplitude to the period of the sinusoid. The frequency

of the incoming energy is described by k'L, the normalized

frequency. It is also necessary to specify N, the number of

coefficients or discrete wavenumbers samples to be used in a

particular numerical experiment. The region of energy

conservation in the two dimensional (N-(k'L)) domain has

been mapped for each of the modeling techniques and for

various interface slopes.

A number of features in the energy conservation maps

are worthy of -mention. As the normalized frequency

increases, more coefficients are needed to obtain

convergence and energy conservation. This is expected
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because with increasing frequency more of the coefficients

represent propagating waves. The WR, WF, and AL techniques

are all limited to a maximum wavenumber beyond which the

solution diverges and energy is not conserved. CB does not

appear to have such a limit.

For the methods that are wavenumber limited, the

maximum number of samples, Nmax, depends on frequency and

h/L, the slope of the interface. For steep slopes (h/L z

0.15) there is an upper limit on the frequency for which

convergence occurs at any wavenumber. Therefore, when we

discuss slope limitations for a particular modeling method

we must also specify frequency.

Note that the wavenumber limit is a numerical feature

not necessarily related to the Rayleigh ansatz. For

example, the WF method which does not invoke the Rayleigh

ansatz has an Nmax for slopes both above and below the

Millar limit of h/L = 0.072. Also the the WR and AL methods

have wavenumber limits for h/L less than 0.072.

Further scrutiny of Figure 3 reveals that Nmax is

always in the evanescent wave region where coefficient

amplitudes increase exponentially with z. Use of these

waves in the solution will eventually exceed the precision

and wordsize of the computer. The convergence range can of

course be extended by increasing the word length and

precision.

The most significant feature of the energy conservation

maps is that the WF and AL methods have very similar regions
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of convergence. For steep slopes, the two methods show

convergence up to about the same maximum frequency. For h/L

= 0.1, AL and WF are nearly the same except WF diverges

somewhat more rapidly as N increases. For h/L = 0.072,

there is a more dramatic difference in the rate of

divergence. Nonetheless, these data support the observation

made by Wirgin (1980), that regardless of the Rayleigh

ansatz, the WF and AL methods are limited to the same

maximum slope.

The performance of WR falls short of WF or AL. For

gradual slopes, WR has lower Nmax values, and for steep

slopes WR does not converge at all. It is no surprise that

WR would have a lower Nmax than WF since Waterman's original

surface field expansion introduces an additional exponential

factor in the calculation of the Q-matrix elements.

(Equation 15 as compared to equation 17.)

Use of the normalization technique described in

Appendix I alters the region of convergence for the WR and

WF methods. The normalization does not extend the maximum

allowable slope, but it does increase Nmax, allowing more

coefficients to be used, especially at frequencies below the

maximum for a particular slope. With the normalization, the

region of energy conservation for the WF method and the AL

method are nearly identical even at low slopes (Figure 4).

The region of convergence for the WR method is also extended

by use of the normalization.
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The convergence characteristics of the CB method are

substantially different from the other three methods. For

CB there is apparently no limit due to the exponential

factors associated with evanescent waves. The absolute

value in the formulation of the CB method ensures that only

exponentially decaying factors are in the matrix elements.

In general, more wavenumber samples are needed with the CB

method to obtain the same accuracy in energy conservation as

with the other methods. This may be partially due to the

fact that CB is an even-determined collocation method as

opposed to AL which is over-determined.

The conservation of energy constraint is one way to

evaluate the four modeling techniques. Another such test is

the satisfaction of boundary conditions. Unfortunately, for

some of the techniques this is neither practical nor

possible. As formulated, the CB method is even-determined

and the residuals of normal stress are always zero. For the

Waterman techniques there is no valid expression for the

stress at the interface. The expansion of the Green's

function in terms of only upgoing or downgoing waves, yields

a reflected wavefield solution that is valid only in the

region below the lower bounding plane.

An alternative evaluation for the modeling techniques

is to compare the displacements at the interface. It is

possible to calculate displacements at the interface with

all of the methods, even the Waterman techniques because

equations 15 and 17 do apply immediately at the surface.
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Although there is no boundary condition for displacements to

satisfy, they can be used to test for consistency between

the methods. Figure 5 shows surface displacements

calculated with each of the modeling techniques for

interfaces of low, moderate, and steep slope. In each case

an appropriate frequency and number of samples have been

chosen, i.e., well within the region of energy conservation.

For small slopes, (h/L = 0.1) all four methods agree

well in terms of surface displacement. Note that the AL and

WR methods agree with the others despite the fact that the

slope is beyond Millai's theoretical Rayleigh limit of

0.072.

For the medium and steep slope models, the results are

different. We see that the WF and CB methods agree well in

terms of displacement on the surface, but WR and AL show

marked differences. WR does not satisfy the energy

conservation constraint for these parameters, so it is not

surprising that the surface displacements are different.

For AL the energy conservation constaint is satisfied, tut

the method fails to yield correct surface displacements for

slopes significantly beyond the Rayleigh limit.

It is useful to compare the wavefields not only at the

surface, but also below the lower bounding plane of the

topography. One way to do this is to look at displacements

at the lower bounding plane (z = h). Another way is to

compare the amplitude spectra of the reflected energy.

Figure 6 shows the displacements at z = h for the same slope
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and frequency cases for which we examined surface

displacements. For h/L = 0.1 all four methods agree

closely. For the steeper slope, WF, AL and CB agree, but WR

fails to give a consistent result. The amplitude spectra in

Figure 7 show the same pattern of consistency. For steep

slope the spectrum for WR blows up in the evanescent

wavenumber range, but the other methods agree reasonably

well. (Note the logarithmic scale.)

For slope greater than the Millar limit AL fails to

yield surface displacements consistent with the other

methods, but it appears to give the correct result below the

lower bounding plane.
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COMPUTATIONAL CONSIDERATIONS

In general, the CB method requires more wavenumber samples

to converge and is slower for a given N, than the other

methods. This is unfortunate, since it performs well over a

broader range of slope and frequency parameters.

Figure 8 shows the computation time for each of the

methods on the CONVEX Cl supercomputer using single

precision arithmetic. For N > 40 the CPU time required for

CB is approximately an order of magnitude greater than for

AL or WF.

Each algorithm consists of two labor intensive parts,

creating the N X N matrix and solving the system. The AL,

WR, and WF algorithms each require the execution of three

nested loops to create the matrix. Two of these loops can be

vectorized by the CONVEX fortran compiler. The additional

time required for CB is due to an additional loop implied by

equation 22 as compared to equation 5 for AL and equations

15 and 17 for WR and WF. For each of the methods, the

LINPACK Gaussian elimination routine CGECO, optimized for

the CONVEX, is used to solve the system. A conjugate

gradient linear equation solver was tried, but proved to be

slower than CGECO.

In Figure 8 we see the dramatic improvement in speed

obtained by using an FFT in conjunction with the Waterman

Fourier method.
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SUMMARY

We have presented evidence that the AL, WR, WF, and CB

methods are useable for slopes greater than the theoretical

limit established by Millar for the Rayleigh ansatz. For a

limited class of problems, (SH waves normally incident on a

sinusoidal free surface), we have determined the maximum

slope and frequency that each method can handle. This has

been accomplished by mapping the region in slope/frequency

space where the various methods converge and satisfy the

energy conservation requirement. The fact that the

resulting wavefields are consistent between methods

indicates that the convergent solutions are indeed valid.

Of the four methods studied, it is clear that CB is the

most stable and converges over the broadest range of slopes

and frequencies. The AL and WF methods have convergence

properties very similar to one another supporting the

conclusion of Wirgin (1980) that neither is superior for

steep slopes. We see that for steep slopes , AL gives

erroneous results for displacement on the interface but

gives valid displacements (consistent with WF and CB) beyond

the topography. WR is the least stable of the four methods

and converges only for low slopes.

AL possesses a potential advantage over WF for multi-

layer problems if an interface is within the topography of

an adjacent interface. This advantage exists only for low

slopes where the Rayleigh expansion is valid both inside and
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outside the bounding plane of the topography, i.e. for h/L <

0.072. The Waterman methods do not yield solutions to the

wavefield inside the topography.

We have introduced a normalization technique that

improves the stability of WR and WF. This modification

allows more wavenumber samples to be used in the

calculations, but it does not significantly extend the

slope/frequency limits of those methods.

In terms of execution time, the AL and WF methods are

fastest. Using an FFT to calculate each row of the matrix

in WF is faster than computing N individual integrals or

Bessel functions. For nonsinusoidal interfaces the

improvement in speed will be most dramatic.

The CB method, while it is the most stable, is also the

slowest. It has an additional loop in the calculation of

the matrix elements and requires more wavenumber samples to

achieve convergence.
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FIGURE 1 Schematic of the numerical experiments. U, and UR

are the incident and reflected wavefields. Below the

interface the shear modulus and density are M and p

respectively.

FIGURE 2 The "Rayleigh ansatz" expands the reflected

wavefield below the interface as the sum of downgoing plane

waves. Lippmann pointed out that the ansatz was incapable

of representing upgoing reflected energy in the region

between the interface and the plane that bounds the

topography.

FIGURE 3 Energy conservation as a function of frequency and

number of coefficients. Asterices represent reflected

energy flux within 1% of incident flux. Plus signs

represent 1-5% error. Each symbol corresponds to a separate

numerical experiment. Each frame corresponds to a

particular technique and slope.

FIGURE 4 Improvement in convergence due to normalization.
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FIGURE 5 Displacement on the interface. Each frame

corresponds to a separate numerical experiment. The AL

method gives anomalous results despite satisfying energy

conservation.

FIGURE 6 Dispacement on the lower plane bounding the

topography (z=h), using the same experimental parameters as

in Figure 5. The AL method agrees with WF and CB.

FIGURE 7 Wavenumber spectrum of reflected energy at z=h,

using the same experimental parameters as in Figures 4 & 5.

FIGURE 8 Computation time on the Convex C1 supercomputer as

a function of N, the number of coefficients.
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APPENDIX I

To invoke the normalization multiply equations 12 and

13 as follow:

W r =W Q a

1W-1b = [W]- Q -a

where

Wmn e -i-yn n -h

0 n 70 nm

Then solve the new system, which has improved stability:

r' Q +1 a

bi Q -1 a

rf= Q+6[Qtf]l b'

Converting to the original basis functions,

r =W Q+' [QV'-lW a.
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